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ABSTRACT 

A rudimentary statistical energy analysis (SEA) can be employed 

to decipher the functioning of structural fuzzies. A structural fuzzy is a 

device that, when coupled strongly to a structure, increases the damping of 

that structure. A structural fuzzy must be endowed with a modal density 

and structural damping that by far exceeds those of the structure to which 

it is strongly coupled. 

Friday, October 15, 1999 11:00 
Room 210 

Photonic Center 
8 St. Mary's Street 
Boston, MA 02215 

This report is based on the seminar given at Boston University as 

stated above. Viewgraphs are presented on the right and comments 

relevant to that viewgraph are placed on the left. A few of the remarks 

made by the audience are included without reference. Nonetheless, the 

author is thankful for these participations by the attendees. 



A Note: 

Recently a full fledged effort has been launched to develop analyses which yield 

information transcending that which is issued by SEA. In particular, there are claims that 

the information issued by SEA in the low and mid-frequency ranges is deemed 

inadequate for certain response descriptions and noise control purposes. These issues 

were deliberately forfeited by assumptions imposed during the development of SEA and, 

therefore, they lie, by definition, beyond the scope of SEA. The assumptions, so 

conceived, render SEA a more tractable analysis. It is, therefore, impertinent to blame 

SEA for any inadequacies resulting from these forfeits. Moreover, there are those who 

interpret the results in the low and mid-frequency ranges by the failure of SEA to yield 

information that is suppressed apriori in the development of SEA. Yet, by definition, 

SEA can and will yield the information that it is designed to yield, independent of the 

frequency range. Notwithstanding that in a given frequency region, the deviation from 

the mean-value may fluctuate more and more as the violation of the condition of the 

modal overlap becomes more severe [1,2]. In SEA the mean-value is the fundamental 

description. Indeed, the very strength of SEA is that it chooses the right thing (details) to 

be ignorant about as a way to learn something (mean-values). It takes chutzpah to 

ascertain the in the low and mid-frequency ranges by the apparent failure of SEA to 

account for phenomena that lie outside its scope. It transpires that the low and mid- 

frequency ranges are often determined by the failure of those who profess to understand 

what SEA says is, is! 

11 



Revisiting Elements in Statistical 
Energy Analysis (SEA) 

G. Maidanik, NSWCCD (DTMB) 

AGENDA 

• A brief review of SEA is presented. 

• The modifications in SEA due to the influence of strong 
couplings among the substructures are discussed. 

• Some remedial modifications to SEA are heuristically 
proposed. 

• Two noise control problems are described and interpreted 
in terms of SEA: 

1. Control of loss factors (dissipations) in pipe-like 
structures containing beads. The beads are modeled 
to be a fluid of low sound speed and of high damping. 

2. Control of vibrations by increasing damping and 
isolation. In particular, a note is taken of the 
supplementarity of damping and isolation in vibration 

control. 
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Mathematical Symbols 

Scalar 

Vector of Rank N 

V 

V =< 

[V,j 

' = W 

Transposed v+ 
= {v, ■ v5 ...... v.. ■ ■ vw} 

Complex conjugate v* = {v*} 
* ,.t 

v+ v* = a Scalar ;    v   £    = a Matrix ?     ~ 

Matrix of 
RankN 

z = 

Z\\    ^12 

^21    ^22 

VZN\ 

e.g., 

5 - ((z^,-z,(l-5,)) 

z 
:2; 

^/ 

'Nj 

Z\N 
z IN 

■Z 'JN 

•z NN. 

= (Zjf) 

Impedance Matrix Eq. Admittance Matrix Eq. 

Z v   =  F v = y F 

where symbolically y  = (Z) -1 

V.2 



Viewgraph 3 

The division of a complex structure into constituent substructures is crucial in 

SEA. Yet, rarely is this division discussed, and specifications for it are rarely laid down. 

In part, the reluctance stems from the belief that "An arbitrariness (non-uniqueness) in the 

service of a good approximation is not a vice, it is a useful device" and, in part, apriori 

rules are difficult to state. In addition, SEA is a function of the frequency (steady state) 

variable (CO) or the temporal (transient state variable (t). The division may, therefore, 

be dependent on (co) or (t); e.g., a division at (C0l) may be different from a division at 

(C02) where COx ^ C02- That dependence of the division is seldom discussed but its 

significance is here recognized. In the final analysis, it turns out that experience is often 

the best guide to this division. Needless to state, the larger the number of substructures 

the higher is the frequency at which the fundamental resonance frequency lies, and the 

higher is the rank of the matrix equation of motion at SEA. Therefore, the higher the 

number of substructures the higher is the frequency of validity, and the more difficult is 

the manipulations of the equation of motion. On the other hand, the smaller the number 

of substructures the more details are suppressed; excessive suppression of details may 

render the equation of motion moot and without substance. 

None of these extremes are happy circumstances. It is hoped, in this connection, 

that some idea for the appropriate division procedure will emerge in the reading of this 

report. 



Statistical Energy Analysis (SEA) 

Z(x) v(x) = pe(x) 

v(x) = {va(xa)} 

x->x   ;  £ or (0 

Pea (xa ) 

Substructures 

xa is a vector that spans the dimensionality of the (a)th 
substructure. Thus, if the (a)th substructure is one- 
dimensional, xa is a scalar. If it is two-dimensional, xa is a 
two-vector and if it is three dimensional, xa is a three-vector. 
The dependence of quantities on the time variable (t) or on 
the frequency variable (co) is implicit in this scalar or matrix 
impedance equation of motion. 

V.3 



Viewgraph 4 

A generic division of a complex structure into substructures is represented in 

Viewgraph (3). The choice of the division must, however, be compatible with the 

requirement that the self-impedance operator of the substructures; e.g., Zaa(Xa) of the 

(a) th substructure, be eigenoperators so that a complete set of orthogonal mode shape 

functions may be assigned to each substructure; e.g., (j)aj (Xa) are assigned to the a th 

substructure as depicted in Viewgraph (3). In this manner the individual mode shape 

vectors and the overall mode shape vector may be defined; (j) aj (Xa)  = Wag (xcc)} and 

(f)(x)  = {<l>cc(xa)}> respectively. 

The choice for the self-impedance operators and, therefore, for the coupling 

impedance operators and the mode shape functions is not unique; they may be chosen in 

a variety of ways, however, each way may be related to the others. With experience the 

better choices may be identified. 



A complex composed of a number of coupled dynamic 

systems 

t 
Z(x) v(x) = p(x) 

Z ya\X  y   \  X a) 

I   v(£) = {va(xa)} 

Z (x) = \Zaa {xa )0ar — J dxyzay \Xa \Xy)\\—oay) ) 

The rank of the equation of motion is equal to (AO, the 

number of dynamic systems in the complex. 

The self-impedances; e.g., Zaa(xa), are eigenoperators in the 

sense that 

ZQCCC\^a)*raa \^a)        ^aiai raj \^a)     » •egeg raj 

?«(*«)  =  WaMa))    >    ?(*)    =    {?«(*«)> 

V.4 7 



Viewgraph 5 

Employing the chosen complete and orthogonal sets of mode shape functions, the 

modal equation of motion may be derived as stated in Viewgraph (5). The rank of this 

modal equation may be quite large, especially at the higher frequency ranges. 

Nonetheless, if this equation can be solved for the modal response (V) and the spatial 

dependence of the mode shape functions is retained, the response Va(Xa), of typically 

the a th substructure, may be restored and stated as prescribed in Viewgraph (6). 



Modal decomposition —► removal of the spatial 

dependence in the equation of motion —► modal equation 

I    of motion 

1 =  tt«}     ;      la   =  {Vaj} ; Pe  =  {PJ   ; Pea =  [Peaj]   \ 

^q/7g   =   J ^7   J ^a   Taj\Xa)Zay\Xa\Xy)  YyqyXy) 

The rank of the modal equation of motion is equal to 

£ Af  where N„ is the number of all relevant modes in the 
a        a a 

(a)th dynamic system. 

V.5 



Viewgraph 6 

Again, the modal equations of motion are stated in Viewgraph (6). Since a set of 

mode shapes is assumed to be complete and orthogonal, the modes in each substructure 

are not coupled, couplings occur only between modes belonging to different substructures 

(dynamic systems). 

The inverse equation of motion is stated in order to indicate that if (z) is known, 

its inverse (y) may be used to directly determine the response vector (v) once the 

external drive vector (p   ) is given. 

The high rank of the impedance matrix or the admittance matrix modal equation 

of motion may render a solution well nigh impossible. Means to reducing the rank may 

thus be advantageous, even at the expense of forfeiting details. 

10 



Recovery of the spatial dependence 

Va(xa)  =   Vl • (pa{xa)      ;      Pea(x)  =  p\a   ?«(*«) 

Thus, if the eigenvectors (Pa(xa) are appropriately stored, 

they can be used in this reconstitution when desired. 

Modal equation of motion 

Z V  = P0   ;   Z  - (ZaaSay- ZayQ--öay)) 

kaa ~ (Zajaj°jl) hay = ^Zajyq) 

No modal couplings in Modal couplings across 

a dynamic system dynamic systems 

1    v =yPe ; v - {v,} ; y= (zTl ;    Pe = .{&J 

i 

V.6 11 



Viewgraph 7 

The forfeiting of details starts with the abandonment of spatial information within 

each substructure; only the response of each mode is registered without heed to its spatial 

distribution — the mode is, then, reduced to be a simple harmonic oscillator. Once the 

spatial information is forfeited, the phase of each harmonic oscillator loses its 

significance. If forfeiting the phases can be advantaged in the effort to reduce the rank of 

the modal equation of motion, let it be done. The phases are forfeited by quadratizing the 

modal equation, as stated in Viewgraph (7). Then, the real part of the resulting equation 

is executed, again, as stated in Viewgraph (7). The fundamental statement of SEA is 

presented. This statement is extrapolated from findings pertaining to the interaction 

between two linear harmonic oscillators [2,3]. 

12 



Return to the modal equation of motion 

Z V  = ^e   >   Zqjajvcg~2j lj^ajyqVr<3^        aT^~   eaj    ' 
y    q 

In this equation <P (x)is forfeited by spatial averaging. 

Now the phases in v are forfeited by quadratizing the 

modal equation 

WVq/'2   "  2 2^)'  ZajrqVrq(lSar)  = (VajTPeaj • 
7     q 

Take the real part of and normalize 

J J VJ   q J 

+ X YJiajyq<^ai~^jq) Q-Say) 
7   q 

This is the fundamental statement of SEA with 

'laiva I ajyq lyqaj 

Small if (Oaj^co7q 

Large if coaj-corq 

V.7 13 



Viewgraph 8 

The definition of the modal energy (£m-) of the (/)th mode (harmonic 

oscillator) in the (a)th substructure is stated in terms of the mass (Ma) ofthat 

substructure. The quantity (£^Qn) is the kinetic modal energy stored in the referenced 

mode. The real part of { (v^-)  peaj } is equated to the external power input into the 

(j)th mode in the (cc)th substructure. 

The span function is defined in terms of a frequency bandwidth (Aß)) centered 

about (ft>) that includes all modes within it. Thus, <• • • -^ß, represents frequency 

averaging over the quantities that pertain to the resonance frequencies that lie within 

(Aft)). In transiting from Equation (a) to (b) on Viewgraph (8), equipartion of modal 

energy is assumed; namely, £aj   ~  £aj   -   £a and £yg   =   £yr   =   £y of modes 

that lie within the modal span functions Uaj and Uyg, respectively. Equation (c) on 

Viewgraph (8), merely generalized Eq. (b) and cast this generalization in matrix form. 

Note that f\ya   =   J\ay but r\ja is not necessarily equal to T]ay. Indeed, the two 

quantities; namely, 7fya and r\ay, are related by a consistency relationship, as stated in 

Viewgraph (9). 

14 



Modal equation of SEA 

£(xj — Ma\vaj\    ~ 2£Kaj 

naj = Re{(va/)*/?   .} ay re0Cj. 

riajaj = Re {Zajaj/(G)Ma)} 

Using the modal span functions UaA(D,CDaj,riaj) 
q/v   '«;''«/ 

<WW+Z X^m(^;-^)(1-^)   = (fie*'®)). r   q iajyq\^aj    ^yqs\-   ^ay'        \'"ecg'■' w"A(o (a) 

naaEa+T, J7™(£«-£r )(!-&»/)  = (Keal(0)   , (to 

(2 *?) £ =   Ze ^        2 = (^ar-nyad-Sar))    . 

(O  = (coSar) ;     e - {£„}     ;       ne = {Kea} 

(c) 

'la 2^'lya     ' Vya        ny^lya   »      ^7ra   ""    vlyoai) 
7 

ya        '"y'lya \ya tyqaj/ Aco 

V.8 15 



Viewgraph 9 

Global density quantities are defined in terms of the (typical) modal quantities and 

the modal densities. The modal density na (co) of the (a) th substructure counts the 

modes per unit frequency that reside about the frequency (ft)). Thus, na(co)(Aco) are 

the number of modes that are spanned within the modal span function. This number is 

(Uaj(CO,COa:,r}aj)&(o ■ [cf. Viewgraph (8).] As indicated on the figure, a substructure 

at SEA is completely defined in terms of its loss factor; e.g., {r\aa) for the (a) th 

substructure, of its modal density; e.g., (jla) for the (cc)th substructure, of its mass; 

e.g., (Ma) for the (a)th substructure* and, finally, of its coupling loss factors; e.g., 

r\ay for the coupling between the (/)th and the (a)th substructures. Consistent 

relationships exist among the coupling loss factors as stated in Viewgraph (9). 

* The mass of a substructure, (Ma) for the (a) th substructure, is seldom stated 

explicitly, but is always implied. 

16 



ea 

^a ^cc^a Stored Energy Density 

TT       = rj 7T Input Power (External) 

Density 

(Vya lrtay) = (nr/na)     Consistency Relationship 7 

V.9 17 



Viewgraph 10 

In Viewgraph (10) a statement of the matrix modal equation of motion and the 

matrix global equation of motion at SEA are stated. Note the difference between the loss 

factor matrix T\ for the modal and the global equations. The difference lies merely in the 

off-diagonal elements and that difference is accounted for by the consistency relationship 

stated in Viewgraph (9). The matrices are the transpose of each other. 

18 



Modal SEA 

77 co e = ne   ■   e = {£„}   ; ne =  {nea}   ; 

n = (,njaY-'nra(i-8ar)) ■, r\a = 2 77^ ; 

Global SEA 

n co E = ne ; £ = {£•«} ; ne = {uea} ■, 

n = (7laSay-rlay(l-8ay))   >   <» =((o5ay) ia ay    iccy^       ay 

v.10 19 



Viewgraph 11 

A recap is briefly stated in Viewgraph (11). 

20 



The spatial dependence in the equation of motion 

is removed by introducing sets of orthogonal modes: 

A set of modes per substructure. 

The phase dependence is removed by quadratizing 

linear quantities: 

Responses -►    Stored Energy 

Densities 

External Drives ■*     External Input 

Power Densities 

Dissipations -►     Loss Factors 

Couplings ■>     Coupling Loss 

Factors 

Sum Over Modes 
Modal  ►     Global 

Modal Densities 

(Quantity) +     (Aco) (Quantity 

Density) 

V.ll 21 



Viewgraph 12 

A question may be asked as to whether the external input power density into a 

substructure; e.g., the (a)th substructure, is affected by the couplings to other 

substructures. When SEA was developing under the assumption that the coupling 

strengths are weak; e.g., 

Tlay \Hyy "*" ^lay)      ^ ^      » 

the external input power density (IIa) into the (a)th substructure was assumed to be 

unaffected by the couplings; i.e., it was assumed that 

(iwO s i . 

Is this result valid for coupling strengths that are strong? A heuristic argument is 

developed in an attempt to answer this question. 

22 



£°     E° 

n  /IT = ^ 

_\ne« 
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View graph 13 

For this purpose it is found useful to first define a modal coupling strength (^) 

and its counterpart, a global coupling strength (Ea)- The definitions are cast in proper 

parametric forms; the modal and the global coupling strengths, (££) and (Ea)> 

respectively, are functional of only those parameters that describe the substructures and 

the couplings between them. These parametric forms are not functional of the external 

input power into and/or the stored energies in the substructures. Also, note the natural 

upper limits on the modal and the global coupling strengths. 

24 



^ea' A lea 
if 

It is convenient to define the coupling between the 

(7) th and the (a)th substructures in terms of a modal 

coupling strength. This modal coupling strength is 

designated (££) and its expression is: 

\&yl&a)        *\ayV\yY      my) ia 

Global coupling strength 

(EJEa) = (n7/na)^a = EY
a < (nJna) 

7 7 r 

V.13 25 



Viewgraph 14 

The definitions of the modal and the global coupling strengths are repeated and 

the notion of weak and strong couplings are explicitly stated. 

26 



Modal coupling strength 

(er/ea) = r?«y(%+^)"1 = <L <*   • 

Global coupling strength 

(EyIEa) = (nYlna)^l = Z7
a < (ny/na) 

Weak coupling: 

is«  l 1 

Strong coupling: 

,      I.e.,   'lyY^^'lay      •> 

F <     l 

sr <{n7ina) 
, I.e., I\yy       <       l/^y, 

V.14 27 



Viewgraph 15 

The definition for the external input power density, into an isolated substructure, 

in terms of the spectral density of the external drive and the conductance is standard. The 

expression for the conductance in terms of the modal density and the mass of a 

substructure is also standard. Relying on these standards, the conductance of a coupled 

substructure is heuristically suggested. Of course, the couplings may alter the modal 

densities as well as the masses that define the substructure. It is assumed that such 

alterations are second order effects even when the coupling are strong; i.e., it is assumed 

that the na 's and Ma 's are robust parameters with respect to couplings. Under this 

assumption typically the ratio (Ga I Ga) may be determined as stated. 

28 



External Input Power 

rio n     — r\° 
^Jra°fa        LLea 

G°a = (n/2)(na/Ma) , 

na  n 

GaSfa  ~ *^ea> 

Ga = (nl2)(nalMa)    , 

UealU°ea = (Ga/G°)? 

ea 

na = K+ I (nya)] ; Ma = [Ma+Z,MyQ] 
y*a y*a 

(Ga/G°a) = [1+ X (ßlM + S (Mr/Ma)^] 
-1 

V.15 29 



Viewgraph 16 

Modifications to the global equation of motion at SEA are, thus, suggested so that 

the equation may be expressed in terms of the external input power density vector n or 

in terms of the external input power density vector n • The latter input power density is 

determined when the couplings are removed. How significant is this modification to 

SEA? Before answering this question, two simple examples in which the modification is 

insignificant are considered for the record. 

In the first, weak coupling is assumed. For this case, weak coupling is defined as 

(E4)   «  land [X(M7/Ma)^]«  1   . 
y*a Y*CC 

Under this definition R  =   1. 

30 



(Ga/G°a) = [l+EH^Cl+SH/mJH^r1; my     -    {My I fly 

(Ga/Ga)   ~ 

> 1 ; modal density-rich couplings 
1 ; similar couplings 

< 1 ; mass-rich couplings 

ßE = m)E=Ue = RU 

(Ue/l£) = (GJG°a) 

{Ja bfsv   — A A^ rv     "»    {fa ^ i = n. 7fa   ~ xxea     »     w«^/a:        xxea 

"7 i-l R = (Ra8ar)  ;   ^^[l+E^^fl+^K/m^] 

[1+ 2 (M /M)^] 7^a      7      «    a 

7 n-1 

V.16 31 



Viewgraph 17 

In the second, similar coupling is assumed. In this case 

(Ma/na) = (My/riy) = (MI n) = fn 

and, therefore, again R  =   L A physical structure that trivially falls into this category 

is derived by introducing a "control line" on a plate; the control line is featured by the 

dashed line. In this example «^ oc A^; M^ «= A^ and |« -»1. Therefore, similar 

couplings are assured and (Ylea I Tlea)  =  1. A ratio that may be of interest to 

determine is (Ea I E°a). The determination is presented in Viewgraph (17). The results 

indeed make physical sense and could be apriori predicted. 

32 



nxocAx   ;   MxocAx    and    ^ -»1 

.\ Similar couplings and (Ilea /IIea)-»l 

(£«/££) = (W&)   ; Vt = [»7«*+W4*)l 

(V*D = (VA>0u^) ;A = A«+A: 
7]e = (A)-1 [77aaAa+r7ryAr] 

n, n. 
^ «    "; - in (a)th    in [(a)th+(y)th] 

V.17 33 



Viewgraph 18 

What is the relevance of the modified global equation of motion at SEA to its 

application, say, to a noise control problem? The application is illustrated in 

Viewgraph 18. In this viewgraph, a substructure; e.g., the (a)th is depicted in isolation 

and as coupled to another substructure; e.g., the (7) th. The coupling is introduced in 

order to achieve a noise control goal, as stated in Viewgraph 18. A generic definition of 

a loss factor is suggested and challenged. 

34 



A noise control goal is usually expressed in SEA by 
a ratio of quantities. Thus, a legitimate noise control 
goal may be expressed in terms of minimizing 

Isolated 

(Uncoupled) 

Coupled 

Some of these ratios are defined as loss factors, i.e ,     A.W., 

7] = [EL/(fi>E)] ; What Tle ? 
What E ? 

V.18 35 



Viewgraph 19 

The generic definition for a loss factor may support a number of definitions. The 

relationships among these definitions are also presented. All these definitions pertain to 

loss factors that are of proper parametric forms. Which of these definitions address true 

loss factors is also noted. 

A loss factor requires accounting for the external input power density into a 

structure (or a substructure) and the generated energy density stored in the structure needs 

to be totally accounted for. Otherwise, questions such as "Where did the energy go?" 

may arise in a formalism that is basically a statement of the "conservation of energy." 

36 



F°     E° 

Isolated 

(Uncoupled) 

Coupled 

laa = ilC I (coK)   ;   C = Tfc = [IE, / (©Ea)] ; 

J7?'sifcy=Olea/(©Er)]   ;     77«Sr7e=[n€a/(ö)E)]; ry 

E = (Ea+Ey)   ; nea - «[(^EJ+C^E,)] 

y\-l    . % = to+TLyUL)]  ; rj. = rit(Eir   ; rr 

r] =7] ri+sDr1 ; 3£ = (Ey/Ea) . 

Only 7]„_,, rj  9 and 7] are TRUE loss factors. icca'   iyy 

V.19 37 



Viewgraph 20 

A practical example is presented in Viewgraph 20. A hollow rectangular steel 

structure is considered as a master substructure. This substructure is coupled to another. 

The second substructure is composed of beads that fill-in the hollow space. The beads 

are modeled as a fluid of low compressibility compared with that of water and density 

that is comparable with that of water. The low compressibility and the moderate density 

yield a low sound speed; e.g., in the range of one-fifth of the sound speed in air. The low 

speed of sound generates high modal densities. The rubbing of beads against their 

neighbors yield high loss factors in the beaded-fluid. The moderate density allows, 

nonetheless, for reasonably high coupling strengths. These attributes qualify the beaded- 

fluid substructure as a structural fuzzy. As such, in the steady state condition, a 

significant portion of the energy density is stored in the adjunct structure and much of it 

is efficiently dissipated. In this way the structural fuzzy constitutes an effective damping 

device; however, at best it yields an overall loss factor that converges on that of the 

adjunct substructure, as dictated by Le Chatelier's Principle. Le Chatelier's Principle 

roughly states: "When a dynamic system is modified (e.g., by coupling to it a structural 

fuzzy) with the intention of achieving a high degree of change in the noise it issues, the 

achievement is mitigated by the implementation of the modification," e.g., the loss factor 

converges, at best, to that of the adjunct substructure. 
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Viewgraph 21 

The attributes of the combined structure, comprising the master substructure and 

the adjunct substructure, are exemplified in Viewgraph 21a and b. The loss factor 7]t, in 

Viewgraph 21c, is that derived by setting the ratio (Hea I Tlea) equal to unity, 

[cf. Viewgraph 20.] The convergence of the overall loss factor onto 7]e is clearly 

discernable in Viewgraph 21. 
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Viewgraph 22 

Variations on the standard theme are depicted in this Viewgraph; polybeads and 

beads in the form of sand are exemplified. Again, differentiation between T\t and T]e is 

illustrated. The convergence of the loss factor T\e on the loss factor T]yy, of the 

structural fuzzy, is of particular interest. 
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Viewgraph 23 

In this Viewgraph the Principle of Supplementary of Damping and Isolation is 

annunciated and formulated. This example is the antonym of that of Structural Fuzzy. 
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Another noise control goal may be cast in terms of 
minimizing the ratio of the power density [(cori^Ey] 
dissipated in the passive (y)th substructure to the 
external input power density (Uea) into the externally 
driven (a)th substructure: Example of the Principle of 
Supplementarity of Damping and Isolation. 
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Viewgraph 24. 

In this Viewgraph the Principle of Supplementarity of Damping and Isolation is 

exemplified and illustrated. 
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